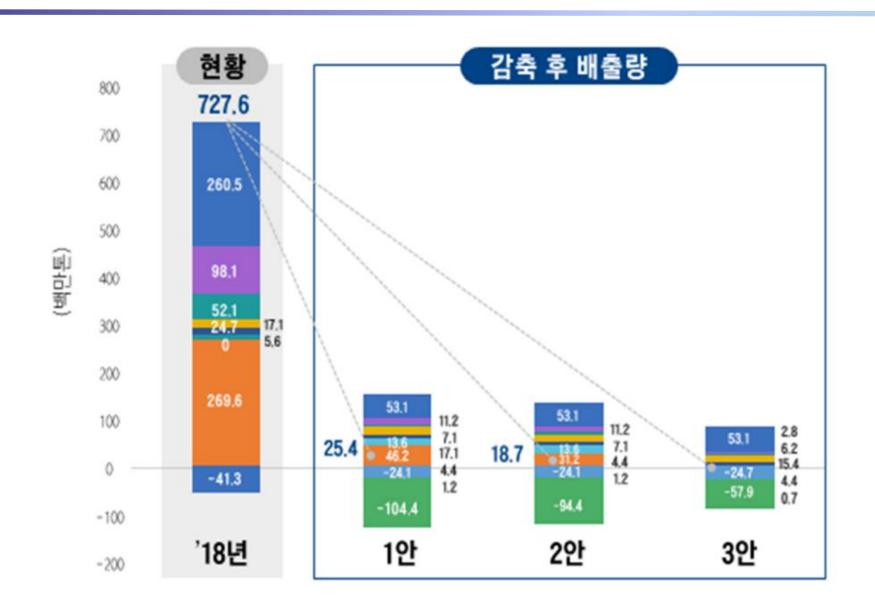
탄소중립 시나리오, 무엇이 문제인가 - 산업/전환 부문을 중심으로

2021. 8


이영경 (에너지정의행동 사무국장)

2050 탄소중립 시나리오 초안 - 수립배경/원칙 중에서 (7~13page)

- □ 기후변화 대응이 늦어질 경우 국가 경쟁력 하락 불가피
- 그간의 온실가스 배출현황과 성과를 고려할 때, 지속적인 온실가스 감축을 위해서는 **발전·산업부문 등의 획기적 감축이 전제**되어야 하나.
 - 우리나라는 제조업·에너지多소비 업종의 비중, 주요국 대비 석탄발전 비중이 높아 전반적인 구조 전환이 없이는 획 기적 <u>감축 곤란</u>

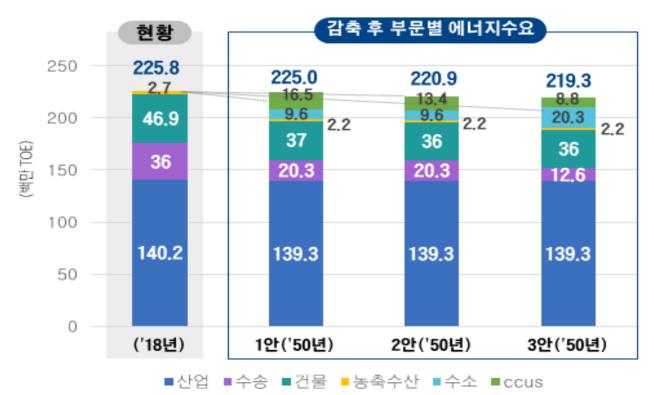
- □ 책임성의 원칙
- (배출책임자 부담) **탄소중립을 위한 주체**로서 **정부뿐만 아니라 산업계, 국민**을 포함한 **사회 전체**가 **행동양식 변** 화를 통해 **감축 활동에 참여**하도록 **촉구**

2050 탄소중립 시나리오 초안 - 온실가스 감축안

♠ ^③석탄(화석) 발전 유무, ^②전기·수소차 비율, ^③건물 에너지 관리, ^④축산 관리, ^⑤CCUS· 흡수원 확보량, ^⑥수소 공급방식 등 핵심 감축수단을 달리 적용한 3개 시나리오 제시

☞ 1안: 기존의 체계와 구조를 최대한 활용하면서 기술 발전, 원·연료 전환 등을 고려

☞ 2안 : 기술 발전, 원·연료 전환에 더하여 **화석연료를 줄이고 생활양식 변화**를 통해 추가 감축


☞ 3안 : 화석연료를 더욱 과감히 줄이고, 수소 공급을 전량 그린수소로 전환하는 등 획기적으로 감축

(단위: 백만톤 CO₂eq)

부문		'50년		주요 내용		
一十正	1안	1안 2안 3안		T# 416		
순배출링	25.4*	18.7*	Net- Zero*			
전환	46.2	31.2	0	· ^{1한} 석탄발전 최소유지, ^{2한} 석탄발전 중단, ^{3한} 화석연료발전 중단 . 재생에너지를 중심으로 수소연료전지, 동북아그리드, 무탄소 新전원 등 전원믹스 다양화, 분산화		
신업	53.1	53.1	53.1	 고효율(열손실 감소기술, 노후설비 교체 등) 공장 • 산단 전환 무탄소공정 전환(수소환원제철 기술 100% 도입, 불소계 온실가스 (F-gas) 저감설비 설치 등) 화석 연 • 원료→ 재생 연·원료 전환 등 		
				01		

문제점 1 – 에너지수요 감축 목표가 없다

- 수요관리 계획은 소극적이고 연료 전환에만 초점이 맞추어짐
- 독일 생태연구소 등의 '2045 기후중립 시나리오'
- 전환 가속화를 위한 3개의 지렛대
- 1) 에너지효율 향상과 수요감소 2) 재생에너지 발전과 전기화 3) 연료와 원료로서의 수소

2050년 에너지 수요량은 219.3(3안)~225.0(1안)백만TOE로 2018년 대비 0.3~2.9% 감소 전망

문제점 2 – 재생에너지 확대와 화석연료 감축과 폐쇄 시나리오 부재

- 에너지 발전원 중 재생에너지 비율 목표 1안 56.6%, 2안 58.8%, 3안 70.8%
- 2050년 수명을 다하지 않은 석탄발전의 경우 어느 시점에 종료할 것인가
- 2안 석탄발전 7기 중단 / 3안 석탄 및 LNG 발전 중단
- 신규 석탄 건설은 어떻게 할 것인가?

	용량(MW)	가동 시작 년도	가동 정지 년도
가동 예정 설비	12.554		
북평 #1, 2	595	2017년 3월	
₩1, Z	595	2017년 8월	
신보령 #1, 2	1,020	2017년 6월	2017년 926MW 가동,
전포경 #1, 2	1,020	2017년 9월	2018년 90MW 증설
삼척그린 #2	1,022	2017년 6월	
태안 #10	1,050	2017년 6월	
당진 #9, 10	90(증설)	2017년 1월	
중선 #9, 10	90(증설)	2017년 5월	
신서천 #1	1,000	2020년 3월	
고성하이 #1, 2	1,040	2021년 4월	
11.8 of of #1, 2	1,040	2021년 10월	
삼척화력 #1, 1	1,050	2021년 12월	
급역작억 #1, 1	1,050	2022년 6월	
강릉안인 #1, 2	1,040	2022년 6월	
পেতিয়ায় #1, 2	1,040	2022년 6월	

(단위: TWh, 괄호안은 %)

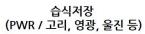
Ų,

구분↓	원자력↓	석탄↓	LNG↓	재생E,	연료 전지	동북아. 그리드.	무탄소 신전원	부생 가스 ↓	합계↓	배출량 ↓ (백만톤) ↓
1안,	89.9 ↓	19.1 ↵	101.1 ↵	710.7↓	121.4↓	33.1↓	177.2↓	3.9↓	1,256.4 4	46.2
.ll	(7.2%) +	(1.5%) +	(8.0%) ←	(56.6%) +	(9.7%)	(2.6%) ←	(14.1%)+	(0.3%) +	(100%) 4	40.24
2만,	86.9₄					33.1↵				
<u> </u>	(7.2%) ←	(0.0%) 4	(7.6%)←	(58.8%) +	(10.1%)+	(2.7%) ←	(13.2%) +	(0.3%) +	(100%) 4	31.24
3안,,	76.9↓	0.0↓	0.0↓	891.5↓	17.1↓	0.0↓	270.0↓	3.9↓	1,259.4 4	0₊
21.4	(6.1%) +	(0.0%) +	(0.0%)	(70.8%) +	(1.4%)₊	(0.0%) +	(21.4%) +	(0.3%) ←	(100%) +	U

^{*} 석탄·LNG 감축은 수소·암모니아 전소 전환 또는 근거 법률 및 보상방안 마련 전제↓

문제점 3 - 핵발전을 여전히 남기고 있다

전체 전력 중에서 핵발전은 2050년에 1안과 2안은 7.2%, 3안에서는 6.1%가 남아 있음

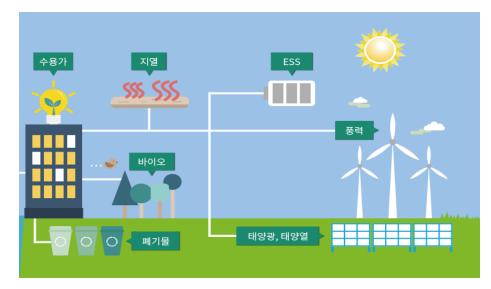

노후 원전 가동 정지	13,129		
고리 #2, 3, 4	650	1983년	2023년
	950	1985년	2024년
	950	1986년	2025년
월성 #1	679	1982년	2017년
월성 #2, 3, 4	700	1997년	2026년
	700	1998년	2027년
	700	1999년	2029년
한빛 #1, 2, 3, 4	950	1986년	2025년
	950	1987년	2026년
	1,000	1995년	2034년
	1,000	1996년	2035년
한울 #1, 2, 3, 4	950	1988년	2027년
	950	1989년	2028년
	1,000	1998년	2037년
	1,000	1999년	2038년

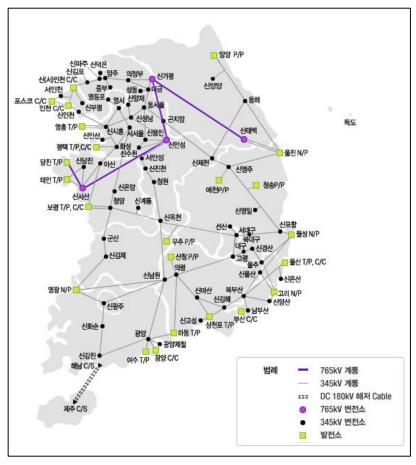
건식저장 (CANDU, 월성)

- 전력공급은 수요와 공급을 일치시키는 것이 주요한 과제
- 간헐성 높고 소규모인 재생에너지에 맞춰 시스템 보완이 시급함
- 경직성 대규모인 핵발전 시스템과는 충돌하게 됨
- 대규모 핵발전으로 인해 태양광발전 멈추는 상황 발생할 수도
- 제주, 올해 1월~8월 중 풍력발전 45회나 출력 제한 발생

3000억 들여 개발한 원자로 좌초위기

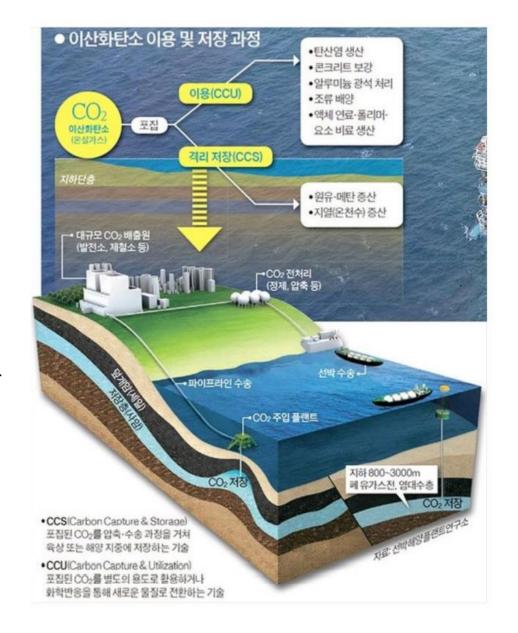
지경부 "안전성 의문" 별도 모델 개발 교과부 "지경부 협조 안하면 직접건설"


심시보 기자 입력: 2011.10.24 17:22:01 수정: 2011.10.25 08:02:46

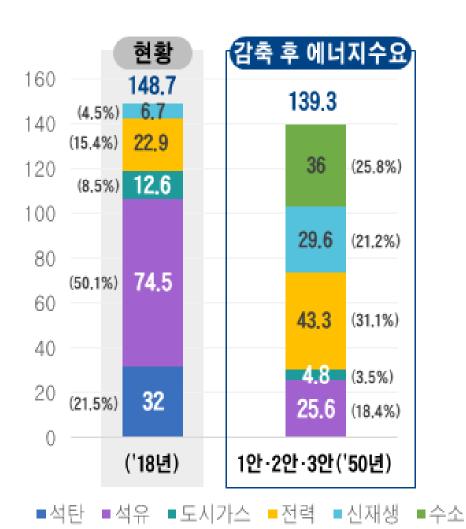

정부가 3000억원 이상을 들여 개발한 수출 용 중소형 원자로인 '스마트(SMART)'가 자 첫 사장될 위기에 처했다. 연내 표준설계 인 첫 사장된 위기에 처했다. 연내 표준설계 인 지 않아 사업시행이 불투명한 데다 지식경 제부가 또 다른 중소형 원자로(SMR·다목 적 모듈형 원자로) 개발에 나서면서 스마트 개발을 담당하고 있는 교육과학기술부와 불협화용용 내고 있다.

교과부는 "지경부가 스마트와 다를 바 없는 중소형 원자로 개발에 나선 이유를 모르겠 다. 또 원전 건설 담당 부처로서 스마트 사 업화는 나물라라 하고 있다"고 비판한다. 반면 지경부는 "SMR는 스마트와 완전히 다 른 개념의 원자로다. 스마트는 수출용으로 개발된 만큼 국내 원전으로 지으려면 안전 성과 경제성 등을 재 검토해야 한다"고 맞 서고 있다.

교과부는 아예 지경부 없이 독자적으로 스마트 원전을 짓겠다는 입장도 불사하고 있다.



문제점 4 - 검증되지 않은 기술에 의존한다.


- 무탄소 신전원 1안은 14.1%, 2안은 13.2%, 3안 은 21.4%
- 무탄소 신전원 : 수소터빈, 암모니아 발전 등 현 재 기술 수준에서 상용화가 아닌 기술
- 수소의 경우 그린수소가 아닌 회색수소나 부생수소 활용은 수소 생산과정에서 온실가스 발생이 많음
- 전기화/그린수소화를 이루기 위해서는 재생에너 지 전원의 확대가 우선 진행되어야 함

	Terminology	Technology	Feedstock/ Electricity source	
ICITY	Green Hydrogen		Wind Solar Hydro Geothermal Tidal	
PRODUCTION VIA ELECTRICITY	Purple/Pink Hydrogen	Electrolysis	Nuclear	
VIA	Yellow Hydrogen		Mixed-origin grid energy	
	Blue Hydrogen	Natural gas reforming + CCUS Gasification + CCUS	Natural gas coal	
N VIA ELS	Turquoise Hydrogen	Pyrolysis	Natural gas	
PRODUCTION VIA FOSSIL FUELS	Grey Hydrogen Natural gas reforming		14dividi gas	
PROD	Brown Hydrogen	Gasification	Brown coal (lignite)	
	Black Hydrogen	Casilledion	Black coal	

- Carbon capture and storage
- : 탄소를 포집하여 육상 또는 해양에 저장하는 방법
- Carbon Capture, Utilization, and Storage 포집된 탄소를 다른 용도로 이용하거나 새로운 물질 로 전환하는 방법
- 기술이 있더라도 1000년 이상 안전하게 저장이 가능한가.
- 우리나라의 경우 저장할 공간은 있는가
- 활용할 기술은 있는가

문제점 5 – 산업 및 사회시스템 전환의 노력이 없다

- 탄소배출 제로를 위해서는,
- 산업 구조 전환
- 대량생산과 대량소비가 동력인 경제 구조의 변화,
- 도시계획 등의 변화 등이 함께 이루어져야
- 대기업 중신의 기술개발과 지원이 아닌,
- 대기업의 온실가스 책임의 원칙을 강화해야

2019년 온실가스 배출 상위 업체

순위	위 업체명 업		2019년도 온실가스 배출량(t	CO2) 2018년도 대비 증감량
1	포스코	철강	8148만1198톤	+835만9835톤
2	한국남동발전	발전	5339만9748톤	-417만6296톤
3	한국동서발전	발전	3900만1786톤	-54만2470톤
4	한국남부발전	발전	3667만0122톤	-372만9529톤
5	한국서부발전	발전	3467만3737톤	-328만1801톤
6	한국중부발전	발전	3426만9302톤	-157만9380톤
7	현대제철	철강	2224만5165톤	-26만9121톤
8	삼성전자	반도체	1113만1587톤	+35만6215톤
9	현대그린파워	발전	1083만5566	ココ コ 川 4 00/ OLALO III大
10	쌍용양회공업	시멘트	1079만4303 국니	로 크가 국내 10% 이상을 배출, 내 상위 10개 업체에서 배출한 온실가스가
※출처	: 환경부 온실가스	종합정보센터		l 배출량의 절반 가까이를 차지함

소결 – 기후위기 해결의 과정과 해법은 <정의>로운 방식이어야

탄소배출 제로의 사회는 어떠해야 하는가

- 탄소다배출이 당연한 산업시스템
- 더 많이 생산하고 더 많이 소비해야 잘 사는 삶으로 느끼는 인식
- 경제성장과 기후위기 대응은 함께 갈 수 있을 것인가?

어떤 방법으로 과정을 만들어 갈 것인가

- 기후변화의 완화와 적응에 기여할 것
- 오염이 없고 생물다양성과 생태계를 파괴하지 않을 것
- 다른 생명과 가치에 피해를 주지 않고 안전한 에너지원일 것
- 원래 부정의하게 만들어진 사회를 바꾸려는 노력